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Abstract

This paper studies current state-of-the-art algorithms for
Visuomotor Behavior Cloning with an emphasis on infer-
ence speed and real-time deployment. A common behavior
cloning baseline is used to compare a state-of-the-art Diffu-
sion Policy with algorithms based on transformer and CNN
architectures. We find that accuracy does not increase lin-
early with inference time, suggesting that certain architec-
tures like a deep CNN are optimal for tasks that require a
balance between inference and accuracy. We also see that
fewer denoising iterations in the DDPM lead to no change
in performance but significantly faster inference times. Fur-
thermore, the BCT underperformed our deeper CNN ar-
chitecture; meanwhile, inference time was only marginally
faster, suggesting that deeper CNN architectures provide
a better performance-inference tradeoff than BCT archi-
tectures. We find that changes to noise schedulers (e.g.,
DDPM versus DDIM) are ineffective at meaningfully re-
ducing inference time. Our primary contribution is an ac-
curacy/inference benchmark for the CNN, transformer, and
diffusion architectures: 8-layer CNN, 57-layer CNN, BCT,
and DDPM. See Figure[3)]

1. Introduction

Imitation learning (IL) is an important approach to the
problem of learned autonomy in modern systems. IL is
based on the premise that providing a learning algorithm
with correct demonstrations is often easier than crafting a
well-defined reward function. Behavior cloning (BC) is its
simplest form, where the IL problem is set up as a simple
supervised learning problem to learn a mapping from agent
observations to actions. One of the earliest applications of
this approach was in [|11]], where a simple 3-layer CNN was
trained to perform the task of road following. Since then,
advancements in the availability of data and the power of
models have allowed behavior cloning to be applied to com-
plex problems such as fine bimanual manipulation [5]], com-
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plex autonomous driving tasks [[1]], and challenging field
robotic navigation [7].

While progress has been made on problems such as data
collection/augmentation, model architectures, and learning
algorithms, learned policies remain relegated mostly to the
simulation and research hardware. One of the key limita-
tions remains the availability of high-performance models
that are compact enough to deploy on low-power hardware
for real-time inference. Inference time on hardware is of-
ten neglected in the field of behavior cloning and imitation
learning. This work aims to compare important methods
and architectures in behavior cloning. The study’s primary
aim is to classify BC approaches on the performance ver-
sus inference speed spectrum. Possible optimization and
improvements to these models are also studied. All ap-
proaches are compared to a common block-pushing dataset
that is commonly used in robotics.

To benchmark CNN, transformer, and diffusion archi-
tectures on the block-pushing dataset, we implemented a
naive convolutional neural network (CNN-MLP), ResNet-
50 CNN, which is called ResNet-50 and has additional
layers, a Behavior Chunking Transformer (BCT), and a
Denoising Diffusion Probabilistic Model (DDPM). The
DDPM had the highest accuracy, followed by the ResNet-
50 CNN, the BCT, and the CNN-MLP. We found that per-
formance did not increase proportionally to inference time.
Small improvements in accuracy require significant expo-
nential increases in inference time. Furthermore, we saw
that the diffusion model did not perform better with more
inference, and 10 denoising iterations were sufficient. The
BCT marginally outperformed the 8-layer CNN but under-
performed the 57-layer ResNet-50 CNN. Its inference time
was almost the same as the ResNet-50 CNN, suggesting that
a deeper CNN architecture provides a better performance-
inference tradeoff than the transformer architecture. The
major findings of this study are presented in Figure [3
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Figure 1: Robot Learning Datasets

2. Related Work
2.1. Datasets

Several large datasets have been built recently, both in
simulation and the real world, for the robot manipulation
problem. A summary of these datasets is taken from [§]]
and presented in Figure I} Other important datasets for au-
tonomous vehicles include [|6]], [[15]], and [9].

2.2. Learning Methods and Architectures

The earliest results [11] in behavior cloning involved
rudimentary architectures and simple MSE losses at each
time step to predict the correct action. Since then, further
refinements and novel model architectures have been em-
ployed. [4] introduced a class of implicit methods with an
Energy-inspired loss to improve performance. Recurrent
models have also been widely used for BC. [10] introduced
an LSTM-GMM model for the same task. [[12] utilized a
combination of K-means clustering to cluster possible ac-
tions and then utilized a transformer model to classify the
correct action class. The current state-of-the-art in behav-
ior cloning is Diffusion Policy, which uses a vision encoder
followed by denoising diffusion to generate actions. Dif-
fusion is uniquely well suited to the task of learning from
demonstrations as the data are often strongly multimodal.
However, the slow inference process involving multiple de-
noising steps limits real-time use.

2.3. Inference Times

While the Behavior Cloning task has been extensively
studied with multiple algorithms and architectures being
proposed, no prior work has studied the performance versus
inference time tradeoffs presented by these models. Infer-
ence time on hardware is one of the key drivers of algorithm
choice on real systems, and this area remains unstudied.

3. Data

This paper uses an adaption of the ubiquitous block-
pushing task known as the Push-T benchmark, first used
in the Robotics and Embodied AI Lab at Stanford Univer-
sity [2]]. It consists of a T-block in a random initial position
and a desired end position notated in the image by a green
T-shape pictured. The robot is taught to push this block to
fit the optimal T indentation in its field of vision. While

Figure 2: Push-T Task Environment

only a 2D task, it features complex multimodal trajecto-
ries and contact-rich dynamics. All models were trained
on 200 demonstration trajectories, each approximately 300
steps long. At each time step, we receive 2 images each
of shape [3, 96, 96] and agent poses. The action space is
defined in a 2D positional context, with each dimension
ranging from 0 to 512 for both the x and y coordinates.
Prior to model training, preprocessing steps were applied
to normalize agent positions and actions to the range [-1, 1]
along each dimension. Additionally, image channels were
normalized to the range [0, 1]. For most models, a 90/10
train/validation split was used.

4. Methods

This work studied three classes of BC approaches. (1)
CNN-MLP: convolution layers followed by multi-layer
perception, with MSE loss, (2)(a) BET: K-mean clustering
of actions, followed by action classification using Behav-
ior Transformer, (2)(b) BCT: direct action chunk predic-
tion from observations using transformer encoder, and (3)
DDPM: ResNet Encoder, followed by 1D denoising diffu-
sion.

4.1. Convolutional Neural Network - Multi-Layer
Perceptron

A small feedforward convolutional network was trained
to establish a performance baseline using an MSE loss. The
primary limitation of the CNN approach is its inability to
model multimodal distributions (unlike the diffusion model)
due to the averaging effect of MLE. The input to this model
was two images of shape [Bx2x3x96x96], with the output
being of shape [Bx16x2]. We utilize a receding horizon
approach, where the agent implements and re-plans the tra-
jectory. The CNN architecture consisted of 8 layers. A 3D



convolutional layer was the initial input, followed by five
2D convolutional layers interspersed with batch normaliza-
tion and rectified linear unit (ReLU) activation functions.
The network concluded with two fully connected layers.
The input images, with dimensions [3, 96, 96], underwent
an expansion to 256 channels before being flattened and in-
put into the MLP. We trained with the Adam optimizer and
a dynamic learning rate reduction strategy starting at a rate
of le-2 to mitigate loss plateaus. Initial experiments did not
reveal significant performance improvement with dropout
or weight decay, so our final model used no regularization.
To reduce image dimensions without pooling, a stride of 2
was utilized. This model had 1,365,494 parameters.

4.2. ResNet-50 Network

We then considered a much deeper CNN based on the
ResNet-50 backbone. The structure consists of 57 lay-
ers: one 3D convolution layer, one 2D convolutional layer,
forty-nine ResNet-50 layers, four additional convolutional
layers, and two fully connected layers. We used ImageNet
[3] pre-trainined. All layers except the fully connected layer
were followed by batch normalization and ReLU. It was
trained with a learning rate of 1e-4, the Adam optimizer, no
dropout, and a learning scheduler that reduced the learning
rate on plateau and was trained for 30 epochs. This model
had 34,527,593 parameters.

4.3. Transformer Architectures

We performed experiments with two different models
featuring a transformer architecture.

4.4. Behavior Transformer

Behavior Transformer was first proposed in [12]. It com-
bines a clustering algorithm with a transformer to pick the
correct action class. While the original BeT paper uses
a low-dimensional state-based output, our implementation
uses the 1024-dimensional ResNet-18 vision encoder out-
puts as the transformer’s inputs.

4.5. Behaviour Cloning Transformer

We also implemented a self-designed policy based on the
transformer encoder architecture from [14]]. Early experi-
ments with transformer architectures simply predicting the
next action failed due to the covariant shift problem in Be-
havior Cloning. To mitigate this, we design the BCT, which
predicts actions in chunks using the receding horizon, ac-
tion chunking principle inspired by [5]. This implementa-
tion also acted on the outputs of the ResNet-18 encoder. The
BCT model had 23,952,736 parameters.

4.6. Denoising Diffusion Probabilistic Model

We adopted the state-of-the-art action Denoising Diffu-
sion Probabilistic Model from Diffusion Policy [2]]. It con-

sists of a vision encoder and 1D U-Net. The vision encoder
is based on ResNet-18 (17 layers) with group normaliza-
tion instead of batch normalization to ensure compatibil-
ity with exponential moving averages. It extracts features
from input images and concatenates these features with low-
dimensional observations. This serves as the conditioning
signal for the noise prediction network. It is then passed
through a 1D U-Net.

The 1D U-Net architecture consists of sinusoidal posi-
tion embeddings for positional encoding of the diffusion it-
eration (1 layer), downsampling for reducing temporal res-
olution through strided convolutions (3 layers), and upsam-
pling for increasing temporal resolution using transposed
convolutions (3 layers). Each convolutional block consists
of one convolution layer, GroupNorm, and Mish activation.
There are six blocks in the downsampling path (6 layers),
two in the middle blocks (2 layers), and six in the upsam-
pling path (6 layers). A conditional residual block com-
bines two conditional blocks with a residual connection and
applies FiLM conditioning.

The entire network (38 layers) employs the Adam op-
timizer with a learning rate of le-4 with cosine schedul-
ing for 100 epochs. A maximum of 100 noising and de-
noising steps were performed with a DDPM Scheduler
with a capped squared cosine beta schedule and clipping
to the range of [-1, 1] to improve stability. This model has
91,123,778 parameters: 11,176,512 in the vision encoder
and 79,947,266 in the U-Net.

4.7. Denoising Diffision Implicit Model

A noted limitation of denoising diffusion is the long in-
ference time necessitated by performing repeated denoising
steps. A DDIM Scheduler [13]] was studied to accelerate the
sampling process in diffusion models via non-Markovian
diffusion processes. We ran inference on the initial network
with a DDPM scheduler. Again, we used a capped squared
cosine beta schedule and clipped outputs to the range of [-
1, 1] to improve stability. We also re-trained the full model
with a linear beta schedule.

5. Experiments

Our primary goal was to understand the performance of
the previously described architectures in terms of accuracy
and inference time. To do this, we trained and evaluated
CNN, ResNet-50 CNN, DDPM, DDIM, BeT, and BcT on
the Push-T dataset. Our performance benchmark consisted
of 40 versions of the environment, and the average scores
and inference time were computed. Experiments were also
performed to optimize and improve the baseline Diffusion
Policy for the benchmark.



5.1. Convolutional Architectures

Our work implements two CNN-based architectures for
the BC Task. The compact CNN-MLP model of section
.1 and the deeper ResNet-50 model of section #.2] The
ResNet-50 model has approximately 25 times the param-
eters as the compact model. Both models were trained to
completion on the demonstration set and tested by our ear-
lier benchmark.

5.2. Early Stopping Diffusion

While the original DDPM Diffusion Policy paper 2] uti-
lized 100 denoising steps to generate action trajectories, we
studied the impact of generating actions with fewer denois-
ing steps. The benchmark from section [5] was run on 10
versions of the policy using denoising iterations from 10 to
100. The results of performance and time are shown in Fig-
ure[3l Performance and inference times are studied.

5.3. Efficient Denoising and Sampling

Our work also studied the employment of more efficient
denoising techniques at test time to accelerate inference
time. Namely, the work studied sampling using the DDIM
sampling technique from section Models were trained
with both the original cosine schedule and a linear sched-
ule, and performance was evaluated at multiple denoising
iteration steps.

5.4. Experiments with Transformer Architectures

Three different transformer architectures were imple-
mented and trained on the Push-T Dataset. The first is
the BeT. While the original BeT operated on low dimen-
sional states, our implementation used the output from the
ResNet-18 encoder as input. We then implemented the self-
designed Behaviour Chunking Transformer (BCT) on the
same dataset. The performance of all models was evaluated
on the standard benchmark.

6. Evaluation

Our standard performance benchmarks involve 40 differ-
ent environment initializations. We measure accuracy and
inference time. Accuracy is defined by the percentage of the
desired space covered by the Push-T block at the expected
end state. 100% coverage would mean the block completely
covered the desired T-space as expected. We refer to accu-
racy as the mean total score, the mean of the total coverage
scores.

As we run the experiment on 40 seeds, we take the mean
value across all 40 seeds for accuracy and inference time.
Accuracy is considered to be the mean accuracy across
all 40 seeds but also as two additional metrics: percent
of scores above 0.5 (50% coverage) and percent of scores

above 0.9 (90% coverage). These are important metrics be-
cause the mean percent of scores above 0.5 provides insight
into the models’ ability to generalize and perform decently.
The percent of scores above 0.9 is an important metric in
understanding how well the model would complete the task
in real-world environments where high accuracy is desired.
Inference time is discussed as the amount of time it takes
to run inference for one timestep. The results are discussed
below. All inference was performed on an Nvidia A100
GPU.

7. Results
7.1. CNN-MLP

Being the most compact model, The CNN-MLP had
a relatively quick inference time of 0.0022 seconds per
timestep. Results were overall poor, with a mean total score
of 0.29, 25% of scores over 0.5, and 2.5% of scores over
0.9. This is our baseline performance for a simple CNN
architecture.

7.2. ResNet-50 CNN

The ResNet-50 CNN had a mean inference time of 0.013
seconds (76Hz). The best-performing epoch (30) had a
mean total score of 0.41, 40% of scores over 0.5, and 32.5%
of scores over 0.9.

Overall, the ResNet-50 CNN saw an increase in mean
total score from 0.29 to 0.41, scores over 0.5 from 25%
to 40%, and scores over 0.9 from 2.5% to 32.5%. The
most substantial increase was the increase in scores over
0.9. Deeper, more powerful CNN models are able to signif-
icantly improve performance while still running quickly on
hardware

7.3. Transofrmer Architecture

The clustering plus classification approach of the BeT
failed to generalize at test time. When employed on a
vision-based clone task, the transformer is unable to learn
correct action classes. This resulted in zero successful runs
on the benchmark.

Experiments with Transformer architectures that pre-
dicted the next action sequence ran into the common prob-
lem of covariant shift and were unable to learn the under-
lying action distribution. The receding horizon approach of
the BCT was able to overcome these problems.

The Behavior Chunking Transformer (BCT) mean infer-
ence time was 0.0120s (82Hz). This was a similar inference
time to the ResNet-50 CNN. The BCT performed slightly
worse than the ResNet-50 CNN with a total score of 0.32,
30% of scores above 0.5, and 10% of scores above 0.9. It
slightly outperformed the CNN-MLP architecture but had
significantly longer inference times.
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Figure 3: Performance Variation of Diffusion Policy with
Denoising Iterations

7.4. Denoising Diffusion Policy

The Denoising Diffusion Policy DDPM had a signifi-
cantly longer inference time compared to the CNN-MLP
and ResNet-50 CNN. Even at 10 iterations, the DDPM had
an inference time of 0.1165 seconds per timestep compared
to 0.0022 for the CNN-MLP. At 100 iterations, the DDPM
had a mean inference time of 1.1094 seconds. Overall,
mean inference time increased linearly from 10 to 100 it-
erations. At 10 iterations, the DDPM had a mean infer-
ence time of 0.1165 seconds. Accuracy, percent of scores
over 0.5, and percent of scores over 0.9 fluctuated across
iterations with no clear improvement from 10 to 100. Ulti-
mately, more iterations did not increase accuracy across all
metrics. See Figure[3]

7.5. Denoising Diffusion with DDIM sampling

The DDIM scheduler with a capped squared cosine and
linear beta schedule had a similar mean inference time to
the DDPM scheduler. However, there was no noticeable
change in the mean accuracy or number of scores above 0.5
or above 0.9. The DDIM scheduler with a linear beta sched-
ule also showed no significant difference in mean accuracy,
scores above 0.5, or scores above 0.9 compared to either
the DDPM scheduler or the DDIM scheduler with a capped
squared cosine beta schedule. See Figure ] Overall, at-
tempts to optimize the sampling technique failed to yield
any improvement. Combined with early stopping, the final
optimized policy represented a 10x improvement in infer-
ence time without losing any performance.
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ule, and DDIM with Linear Beta Schedule



Accuracy versus Inference Time for CNN, Transformer, and Diffusion Models
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Push-T task. The interior numbers refer to the parameter size in millions.

8. Conclusion
8.1. Key Findings

Our work categorized various popular behavior cloning
approaches on performance versus inference speed. In gen-
eral, as model complexity increased, so did inference time
and accuracy. However, the relationship between complex-
ity and performance was not as strong as initially imag-
ined. The 57-layer pre-trained ResNet-50 had an inference
time of almost 10x the 8-layer CNN-MLP, but the mean to-
tal accuracy only increased from 29% to 35%. There was
also a substantial increase in accuracy above 0.9 between
the CNN-MLP and ResNet-50 30-epoch CNN, suggesting
that the larger model meaningfully improves its ability to
make accurate predictions rather than generalize with scores
above 50%.

Denoising diffusion policies are state-of-the-art for the
behavior cloning task and are the most performant. This
comes at a great cost to inference times. We found that the
original work over-denoised the action predictions. As we
increased the number of iterations (and, in turn, inference
time) during the DDPM inference step, accuracy was rel-
atively unchanged. Combined with the optimized DDIM
scheduler, this represents a 10x improvement in sampling
from the model.

Transformer-based approaches had a marginally better
accuracy than the CNN-MLP model, although it was signifi-
cantly larger with approximately 24M versus approximately
1.4M parameters. Inference time was almost 10X, sug-
gesting that the ResNet-50 CNN offers a better inference-
performance tradeoff compared to BCT.

Although previous literature suggests that adjusting the
DDPM architecture can result in large changes in inference
time with schedulers such as the DDIM Scheduler, we did
not find this to be applicable to action diffusion for visuo-
motor policy. The DDIM Scheduler resulted in no change
to the accuracy or inference time. Existing DDPM architec-
tures have significantly longer inference times than CNNs
(10x-100x). We found that a decrease in the number of it-
erations during the denoising process linearly decreased in-
ference time without sacrificing training time.

For a comprehensive understanding of inference time
versus accuracy, see Figure[3]

8.2. Limitations and Future Work

Because of computational constraints, we evaluated each
model using 40 seeds (Push-T initializations) for accuracy.
A more comprehensive study might evaluate each model
across a larger number of initializations. Furthermore, we
only evaluated these architectures on the Push-T task. Fu-



ture studies might evaluate architectures on a broad range
of tasks, such as lifting, placing, object transport, tool hang,
etc. One might also incorporate data with human interfer-
ence and perturbation.

The number of models tested and the complexity (with
attention to the amount of time spent tuning hyperpa-
rameters) of each model can be expanded beyond the 8-
layer CNN, 57-layer CNN, BCT, and DDPM models. Fi-
nally, we recommend a comprehensive review of existing
noise schedulers for DDPMs beyond the DDPM scheduler,
DDIM scheduler, and cosine versus linear beta schedules
we reviewed in this paper.
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